Project Proposal

Background

Sea surface temperature (SST) increases due to anthropogenic carbon dioxide emissions are causing a decline in the health of marine ecosystems worldwide―including both temperate and tropical coral habitats (Hoegh-Guldberg & Bruno 2010). Although the effects of rising SST on tropical corals have been well explored (Barshis et al. 2010; Castillo et al. 2014), corals inhabiting temperate hard bottom ecosystems, for example off the coast of Virginia, remain understudied. Sea surface warming has been more prominent in the North Atlantic compared to other ocean basins (Rhein et al. 2013); hence the need to understand how temperate corals will respond to SST increases is urgent. Along with rising ocean temperatures, rapid population growth and human activities in coastal watersheds have caused increased stress within coastal waters globally. Human development along coastal watersheds has increased nutrient loading leading to eutrophication, which, along with sedimentation, has modified primary and secondary production and altered the trophic structure of temperate coastal ecosystems (Gilbert et al. 2014; Paerl et al. 2003; Paerl et al. 2006).

For my masters work, I am studying Astrangia poculata, the Northern Star Coral, because it is a temperate species and its environment is experiencing significant changes in primary and secondary production coupled with increased SST (Paerl et al. 2003; Gilbert et al. 2014; Rhein et al. 2013). A. poculata is a temperate scleractinian coral widely distributed from the northwestern Atlantic to Florida and the Gulf of Mexico (Dimond and Carrington 2008; Kaplan 1988). A. poculata is an important member of the temperate hard bottom community, which provides shelter and habitat for juvenile fish and other invertebrates and also supports various commercially and recreationally important species (Kennish 1999; Deaton, Chappell et al. 2010). A. poculata is also dominant on Mid-Atlantic shipwrecks (up to 75% cover in some areas; D. Barshis pers. observation). These wrecks are a key resource for local fisherman and SCUBA diving operators along the Virginia coast. A. poculata can survive with (symbiotic) and without (aposymbiotic) their symbiotic algae and is thus termed facultatively symbiotic (Dimond and Carrington 2008). The response of corals with facultative symbioses to climate change is understudied, making the study species unique. The trophic ecology of temperate corals may be more complicated than that of tropical corals (obligate symbiosis) and little is understood of the physiological changes to carbon acquisition in A. poculata when bleached. This highlights the importance of understanding how facultatively symbiotic corals like A. poculata could change their methods of obtaining carbon under thermal stress. Understanding A. poculata’s response to temperature stress will allow us to predict how benthic hard bottom ecosystems may shift in the face of a changing climate and will help inform environmental management decisions for hard bottom ecosystems in Virginia and the Southeastern United States.

Project Description

My outreach product will be a video that introduces the viewer to corals off the coast of Virginia, specifically my study species (Astrangia poculata, Northern Star Coral) and the goals of my research. The video will start with the process of getting out to my study site, which is 13 miles off the coast of Virginia Beach at the Chesapeake Light Tower. After taking the viewer out to my site, I will take them underwater to the shipwrecks that A. poculata calls home. I will include footage of collecting the corals, as well as the process of collecting other data at my sites such as temperature and light levels. The video will follow the field work process all the way back to the lab, and demonstrate how I maintain corals in aquaria at Old Dominion University. I will finish up with some details about my masters project and what I hope to learn from my experiments.

I plan to utilize a mix of footage taken in the field as well as photographs and potentially cartoons to illustrate the main points of my research. For example, I plan to communicate to viewers the basic idea of what a coral is by pausing the video on an image of a coral in the field, and then overlay the image with a cartoon demonstrating that a coral is a plant, animal, and rock all rolled into one. Along with communicating this in the video, I plan to bring coral specimens with me to the Virginia Aquarium during outreach events to physically show visitors the different aspects of a coral.

I traveled out to my site earlier this week and already have some wonderful footage to include in this video! The visibility was very poor, but I think it will be a great way to demonstrate the difficulties of field work to the viewer.

Desired Impact

As the outreach component of my Virginia Sea Grant Graduate Research Fellowship, I have partnered with the educators at the Virginia Aquarium to communicate my research. I therefore want to make this video a product that the Virginia Aquarium will be able to utilize, even after I am no longer a graduate student at ODU. The target audience for this video will be the many visitors to the aquarium. In communicating with the public about my research on temperate corals, I have been surprised that few people are aware that there are corals off the coast of Virginia. I hope that this video will serve to inform the public about corals in their own backyard, and even though I can’t physically take the Virginia Aquarium visitors underwater with me, I hope to make them feel like they have experienced this environment, and therefore help them to feel connected to it and want to protect it.

I have already planned several outreach events with the Virginia Aquarium at which I can show this video. This includes a program called Lunch and Learn, which is lunchtime event with the aquarium docents and provides me the opportunity to teach those who will then teach many others about my research and Virginia corals. I will also be working with the Mentoring Young Scientists program and talking with young, aspiring scientists about my work.

 

Literature Cited

Deaton A., Chappell W., Hart K., O’Neal J. & Boutin B. (2010). North Carolina Coastal Habitat Protection Plan. In: (ed. North Carolina Department of Environment and Natural Resources DoMF) Morehead City, North Carolina, pp. 424-426.

Dimond, J. and E. Carrington (2008). Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion. Coral Reefs 27(3): 601-604.

Paerl H.W. (2006). Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecological Engineering, 26, 40-54.

Paerl H.W., Valdes L.M., Pinckney J., Piehler M., Dyble J. & Moisander P. (2003). Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. Biosciences, 53, 953 – 964.

Hoegh-Guldberg O. & Bruno J.F. (2010). The impact of climate change on the World’s marine ecosystems. Science, 328, 1523-1528.

Barshis D.J., Stillman J.H., Gates R.D., Toonen R.J., Smith L.W. & Birkeland C. (2010). Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Molecular Ecology, 19, 1705-1720.

Castillo K.D., Ries J.B., Bruno J.F. & Westfield I.T. (2014). The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming. Proceedings of the Royal Society B: Biological Sciences, 281.

Rhein M., Rintoul S.R., Aoki S., Campos E., Chambers D., Feely R.A., Gulev S., Johnson G.C., S.A. J., Kostianoy A., Mauritzen C., Roemmich D., Talley L.D. & Wang F. (2013). Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: (ed. Stocker TF, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgle) Cambridge, United Kingdom and New York, NY, USA.

Gilbert M.G., Hinkle D.C., Sturgis B., Jesien, R.V. (2014). Eutrophication of a Maryland/Virginia Coastal Lagoon: a Tipping Point, Ecosystem Changes and Potential Causes. Estuaries and Coasts, 37.

Kaplan EH. (1988). A field guide to southeastern and Caribbean seashores: Cape Hatteras to the Gulf coast, Florida, and the Caribbean. Houghton Mifflin Co. Boston, MA. USA. 425 pp.

Kennish MJ. (1999). Estuary Restoration and Maintenance: The National Estuary Program. CRC Press, 376 pp.

Leave a Reply